Sufficient conditions for uniqueness of the weak value

Abstract

We review and clarify the sufficient conditions for uniquely defining the generalized weak value as the weak limit of a conditioned average using the contextual values formalism introduced in Dressel, Agarwal and Jordan (2010 Phys. Rev. Lett. http://dx.doi.org/10.1103/PhysRevLett.104.240401). We also respond to criticism of our work by Parrott (arXiv:1105.4188v1) concerning a proposed counter-example to the uniqueness of the definition of the generalized weak value. The counter-example does not satisfy our prescription in the case of an underspecified measurement context. We show that when the contextual values formalism is properly applied to this example, a natural interpretation of the measurement emerges and the unique definition in the weak limit holds. We also prove a theorem regarding the uniqueness of the definition under our sufficient conditions for the general case. Finally, a second proposed counter-example by Parrott (arXiv:1105.4188v6) is shown not to satisfy the sufficiency conditions for the provided theorem.

Publication
Journal of Physics A: Mathematical and Theoretical
Justin Dressel
Justin Dressel
Associate Professor of Physics

Researches quantum information, computation, and foundations.

Next
Previous